Telegram Group & Telegram Channel
🚫 Что делать с пропущенными значениями перед нормализацией или стандартизацией признаков

Пропущенные значения (NaN, пустые ячейки) затрудняют масштабирование данных, потому что статистики вроде среднего, стандартного отклонения или минимума становятся некорректными. Поэтому пропуски нужно обработать до нормализации.

Основные варианты

1️⃣ Импутация (восстановление) пропущенных значений

Простые методы: среднее, медиана, мода.
Продвинутые: KNN, модели на деревьях, многократная импутация (Multiple Imputation).

2️⃣ Удаление строк с пропусками

Допустимо, если доля пропущенных значений очень мала.

3️⃣ Использование моделей, устойчивых к пропускам

Некоторые алгоритмы (например, XGBoost, CatBoost) умеют обрабатывать пропуски без предварительной импутации.

📌 Вывод

Пропуски надо обрабатывать до масштабирования.
Лучший подход — импутация на обучении, затем масштабирование по тем же правилам.
Не смешивайте статистики между train и test — это критично для честной оценки модели.

Библиотека собеса по Data Science
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/ds_interview_lib/980
Create:
Last Update:

🚫 Что делать с пропущенными значениями перед нормализацией или стандартизацией признаков

Пропущенные значения (NaN, пустые ячейки) затрудняют масштабирование данных, потому что статистики вроде среднего, стандартного отклонения или минимума становятся некорректными. Поэтому пропуски нужно обработать до нормализации.

Основные варианты

1️⃣ Импутация (восстановление) пропущенных значений

Простые методы: среднее, медиана, мода.
Продвинутые: KNN, модели на деревьях, многократная импутация (Multiple Imputation).

2️⃣ Удаление строк с пропусками

Допустимо, если доля пропущенных значений очень мала.

3️⃣ Использование моделей, устойчивых к пропускам

Некоторые алгоритмы (например, XGBoost, CatBoost) умеют обрабатывать пропуски без предварительной импутации.

📌 Вывод

Пропуски надо обрабатывать до масштабирования.
Лучший подход — импутация на обучении, затем масштабирование по тем же правилам.
Не смешивайте статистики между train и test — это критично для честной оценки модели.

Библиотека собеса по Data Science

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/980

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

Pinterest (PINS) Stock Sinks As Market Gains

Pinterest (PINS) closed at $71.75 in the latest trading session, marking a -0.18% move from the prior day. This change lagged the S&P 500's daily gain of 0.1%. Meanwhile, the Dow gained 0.9%, and the Nasdaq, a tech-heavy index, lost 0.59%. Heading into today, shares of the digital pinboard and shopping tool company had lost 17.41% over the past month, lagging the Computer and Technology sector's loss of 5.38% and the S&P 500's gain of 0.71% in that time. Investors will be hoping for strength from PINS as it approaches its next earnings release. The company is expected to report EPS of $0.07, up 170% from the prior-year quarter. Our most recent consensus estimate is calling for quarterly revenue of $467.87 million, up 72.05% from the year-ago period.

Traders also expressed uncertainty about the situation with China Evergrande, as the indebted property company has not provided clarification about a key interest payment.In economic news, the Commerce Department reported an unexpected increase in U.S. new home sales in August.Crude oil prices climbed Friday and front-month WTI oil futures contracts saw gains for a fifth straight week amid tighter supplies. West Texas Intermediate Crude oil futures for November rose $0.68 or 0.9 percent at 73.98 a barrel. WTI Crude futures gained 2.8 percent for the week.

Библиотека собеса по Data Science | вопросы с собеседований from us


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA